

We establish an **Approximate Simulation Relation** between the **Linear Inverted Pendulum** and a **Planar Balancer**.

Our approach enables better push recovery by allowing centroidal momentum to vary.

chor can track the template with ϵ precision.

This enables **better push recovery** by allowing centroidal momentum to vary.

Vince Kurtz, Rafael Rodrigues da Silva, Patrick M. Wensing, and Hai Lin

Approximate Simulation Relations

Complex anchor system:	Lyapunov-lik
$\Sigma_1: \begin{cases} \dot{\mathbf{x}}_1 = f_1(\mathbf{x}_1, \mathbf{u}_1) \\ \mathbf{y}_1 = g_2(\mathbf{x}_1) \end{cases}$	V Interface:
Simpler template system:	
$\Sigma_2: \begin{cases} \dot{\mathbf{x}}_2 = f_2(\mathbf{x}_2, \mathbf{u}_2) \\ \mathbf{y}_2 = g_2(\mathbf{x}_2) \end{cases}$	$egin{array}{l} For \; \gamma(\ \mathbf{u}_2\) \ rac{\partial \mathcal{V}}{\partial \mathbf{x}_2} f_2(\mathbf{x}_2, \end{array}$

Approximate Simulation for Linear Systems

Difficult to find \mathcal{V} , $u_{\mathcal{V}}$ in general, but for linear systems...

 $\mathcal{V}(\mathbf{x}_1,\mathbf{x}_2) = \sqrt{(\mathbf{x}_1 - \mathbf{P}\mathbf{x}_2)}$

 $u_{\mathcal{V}}(\mathbf{u}_2,\mathbf{x}_1,\mathbf{x}_2) = \mathbf{R}\mathbf{u}_2 + \mathbf{Q}\mathbf{x}_2 + \mathbf{K}(\mathbf{x}_1 - \mathbf{P}\mathbf{x}_2)$

 $\gamma(\mathbf{u}_2) = rac{\|\sqrt{\mathbf{M}}(\mathbf{B}_1\mathbf{R} - \mathbf{u}_2)\|}{2}$

where

- $\bullet \mathbf{P} \mathbf{A}_2 = \mathbf{A}_1 \mathbf{P} + \mathbf{B}_1 \mathbf{Q}$
- $\bullet \mathbf{C}_2 = \mathbf{C}_1 \mathbf{P}$
- **K** is stabilizing feedback gain for Σ_1
- M certifies convergence of Σ_1 to zero with rate λ under $\mathbf{u}_1 = \mathbf{K}\mathbf{x}_1$

like Simulation Function: $\mathcal{P}(\mathbf{x}_1,\mathbf{x}_2) \geq \|g_1(\mathbf{x}_1) - g_2(\mathbf{x}_2)\|^2$

$$\mathbf{u}_1 = u_{\mathcal{V}}(\mathbf{u}_2, \mathbf{x}_1, \mathbf{x}_2)$$

$$< \mathcal{V}(\mathbf{x}_1, \mathbf{x}_2),$$

 $\mathbf{u}_2) + \frac{\partial \mathcal{V}}{\partial \mathbf{x}_1} f_1(\mathbf{x}_1, u_{\mathcal{V}}(\mathbf{u}_2, \mathbf{x}_1, \mathbf{x}_2)) < 0$

$$_{2})^{T}\mathbf{M}(\mathbf{x}_{1}-\mathbf{P}\mathbf{x}_{2})$$

$$-\mathbf{PB}_2)\|_{\mathbf{u}_2}$$

tion.

Task-Space: Centroidal Dynamics.

where

Anchor: Rigid-Body Model.

Templates and Anchors

Template: Linear Inverted Pendulum.

$$\dot{\mathbf{x}}_{lip} = \mathbf{A}_{lip}\mathbf{x}_{lip} + \mathbf{B}_{lip}u_{lip}$$

where u_{lip} is the center-of-pressure posi-

$$\dot{\mathbf{x}}_{task} = \mathbf{A}_{lip}\mathbf{x}_{task} + \mathbf{B}_{lip}u_{task}$$

$$\mathbf{x}_{task} = \begin{bmatrix} \mathbf{p}_G \\ \mathbf{h}_G \end{bmatrix} \qquad \mathbf{u}_{task} = \dot{\mathbf{h}}_G$$

$$\mathbf{H}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + \boldsymbol{\tau}_g = \boldsymbol{\tau}$$

ERSITYOF NOTRE DAME

chor can track the template with ϵ precision.

This enables **better push recovery** by allowing centroidal momentum to vary.

Vince Kurtz, Rafael Rodrigues da Silva, Patrick M. Wensing, and Hai Lin

Projecting Contact Constraints to the Template

Cone Constraint

Bilinear Centroidal Momentum Constraint

Constraint Linearization

CWC Constraint on contact force: $\mathbf{Af}_0 \leq 0$ Bilinear constraint on centroidal momentum h_G :

$$\mathbf{A}^{0}\mathbf{X}_{G}^{*}(\dot{\mathbf{h}}_{G} - \begin{bmatrix} \mathbf{0} \\ m\mathbf{g} \end{bmatrix}) \le 0$$

Rewrite in terms of linear (\mathbf{l}_G) and angular (\mathbf{k}_G) momentum:

$$\mathbf{A}^{0}\mathbf{X}_{G}^{*}\dot{\mathbf{h}}_{G} \leq \mathbf{A}^{0}\mathbf{X}_{G}^{*}\begin{bmatrix}\mathbf{0}\\m\mathbf{g}\end{bmatrix}$$

 $\mathbf{A}\begin{bmatrix}\mathbf{I}\\\mathbf{0}\end{bmatrix}\dot{\mathbf{k}}_G + \mathbf{A}\begin{bmatrix}\mathbf{S}(\mathbf{p}_G)\\\mathbf{I}\end{bmatrix}\dot{\mathbf{I}}_G \leq \mathbf{A}\begin{bmatrix}\mathbf{I}\ \mathbf{S}(\mathbf{p}_G)\\\mathbf{0}\ \mathbf{I}\end{bmatrix}\begin{bmatrix}\mathbf{0}\\m\mathbf{g}\end{bmatrix}$ Linear constraint if $\|\dot{\mathbf{I}}_G\|_{\infty} \leq l_{max}$:

$$\mathbf{A}\dot{\mathbf{h}}_{G} + \mathbf{A} \begin{bmatrix} \mathbf{S}(m\mathbf{g}) - \mathbf{S}(\dot{\mathbf{l}}_{G}) \\ \mathbf{0} \end{bmatrix} \mathbf{p}_{G} \leq \mathbf{A} \begin{bmatrix} \mathbf{0} \\ m\mathbf{g} \end{bmatrix}$$

ERSITYOF NOTRE DAME

chor can track the template with ϵ precision.

This enables **better push recovery** by allowing centroidal momentum to vary.

Vince Kurtz, Rafael Rodrigues da Silva, Patrick M. Wensing, and Hai Lin

Proposed Control Framework

Contact-aware Template MPC

$$\begin{split} & n \sum_{t=0}^{N-1} L\left(\mathbf{x}_{lip}(t), \mathbf{u}_{lip}(t)\right) + L_{f}\left(\mathbf{x}_{lip}(N)\right) \\ & \mathsf{t.} \ \mathbf{x}_{lip}(0), \mathbf{x}_{task}(0) \text{ given} \\ & \dot{\mathbf{x}}_{lip} = \mathbf{A}_{lip}\mathbf{x}_{lip} + \mathbf{B}_{lip}u_{lip} \\ & \dot{\mathbf{x}}_{task} = \mathbf{A}_{task}\mathbf{x}_{task} + \mathbf{B}_{task}\mathbf{u}_{task} \\ & \mathbf{u}_{task} = \mathbf{R}u_{lip} + \mathbf{Q}\mathbf{x}_{lip} + \mathbf{K}(\mathbf{x}_{task} - \mathbf{P}\mathbf{x}_{lip}) \\ & \mathbf{A}_{cwc} \begin{bmatrix} \mathbf{x}_{task} \\ \mathbf{u}_{task} \end{bmatrix} \leq \mathbf{b}_{cwc} \\ & \|\dot{\mathbf{l}}_{G}\|_{\infty} \leq \dot{l}_{max} \end{split}$$

Standard Control Framework

Traditional Template MPC

$$\min \sum_{t=0}^{N-1} L\left(\mathbf{x}_{lip}(t), \mathbf{u}_{lip}(t)\right) + L_f\left(\mathbf{x}_{lip}(N)\right)$$

s.t. $\mathbf{x}_{lip}(0), \mathbf{x}_{task}(0)$ given
 $\dot{\mathbf{x}}_{lip} = \mathbf{A}_{lip}\mathbf{x}_{lip} + \mathbf{B}_{lip}u_{lip}$

UNIVERSITY OF NOTRE DAME

chor can track the template with ϵ precision.

This enables better push recovery by allowing centroidal momentum to vary.

Vince Kurtz, Rafael Rodrigues da Silva, Patrick M. Wensing, and Hai Lin

Future Work: Walking Control

Challenges:

- Impact disturbances: robust approximate simulation
- Multiple support

Anticipated Benefits:

- Template ensures contact feasibility
- Less parameter tuning
- More robust

Future Work: Beyond Task-Space Approximate Simulation

DDP is promising, but friction constraints are difficult to handle [3].

Goal: establish formal connection with whole-body dynamics directly

• Use SOS techniques to find $\mathcal{V}(\mathbf{x}_1, \mathbf{x}_2)$

• D-SOS/SD-SOS to address scalability challenges [1]

• Interface = closed-form $(\mathbf{x}_{lip}, \mathbf{u}_{lip}) \mapsto \boldsymbol{\tau}$

Use approximate simulation to enforce contact constraints with the template.

Future Work: Enabling Whole-Body MPC

References

[1] A. A. Ahmadi and A. Majumdar. SIAM Journal on Applied Algebra and Geometry, 3(2):193-230, 2019.

[2] A. Girard and G. J. Pappas. Automatica, 45(2):566–571, 2009.

[3] Y. Tassa, T. Erez, and E. Todorov. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4906–4913. IEEE, 2012.

E R S I T Y O F NOTRE DAME